ダイアモンドの豆知識💎〜性質〜

屈折率
ダイアモンドの屈折率は2.42と高く、内部での全反射が起こりやすい。またダイアモンドのカットとしてよく用いられるブリリアントカットでは、光をあてその反射を見るとき、次の3種類の輝きの相乗効果となり美しく見える。

シンチレーション
チカチカとした輝き。表面反射によるもの。
ブリリアンシー
白く強いきらめき。ダイアモンド内部に入った光が比較的少ない回数の反射をして戻ったもの。
ディスパーション
虹色の輝き。ダイアモンド内部に入った光が反射を繰り返し、プリズム効果によって虹色となったもの。

 

硬度・靭性・安定性
ダイヤモンドの硬さは古くからよく知られ、工業的にも研磨や切削など多くの用途に利用されている。ダイヤモンドは「天然の物質の中」では最高クラスのモース硬度(摩擦やひっかき傷に対する強さ)10、ヌープ硬度でも飛び抜けて硬いことが知られている。ビッカース硬度は種類によって異なり、70 – 150 GPaである[5]。ただし、ダイヤモンドより硬い物質はいくつか知られている。他の宝石や貴金属類と触れ合うような状態で持ち運んでいると、それらを傷つけてしまう事があるので配慮が必要となる。

宝石の耐久性の表し方は他にも靱性という割れや欠けに対する抵抗力などがある。靱性は水晶と同じ7.5であり、ルビーやサファイアの8よりも低い。よくダイヤモンドは耐衝撃性に優れているような印象があるが、鉱物としては靱性は大きくないので緩やかに加重されていく圧力に対しては高い強度を持つが、瞬時に与えられる力に対しては弱く、金鎚で上から叩けば粉々に割れてしまう。また、3次元性の結晶構造なのでグラファイトなどに備わっている自己潤滑性はない。

ここで言う安定性とは薬品や光線などによる変化に対する強さの事である。ダイヤモンドは硫酸や塩酸などにも変化せず、日光に長年さらされても変化はおきない。熱力学的には25℃、105 Paの下でエンタルピーで1.895 kJ/mol、ギブス自由エネルギーで2.900 kJ/molそれぞれグラファイトより高く不安定であり[6]、27℃では約15,000気圧以上の高圧下で安定となる。ただし常温常圧において相互の転移速度は観測不能であるほど充分に遅く、常温常圧では準安定状態とされる[7]。

 

ダイヤモンドより硬い物質
ダイヤモンドの炭素原子が一部窒素原子に置換された立方晶窒化炭素はダイヤモンド以上の硬度を持つ可能性があると予測されている[8]。さらに、六方晶ダイヤモンドとの別名を持つロンズデーライトは、ダイヤモンドよりも58%高い硬度を持つことが計算により予想されている[9]。人工素材と含めると、2009年時点で存在するダイヤモンドより硬い物質は、ハイパーダイヤモンドで市販の多結晶質ダイヤモンドの3倍程度の硬さ[10][11]。また同程度の硬さの物質は超硬度ナノチューブがある。超硬度材料を参照。
ダイアモンドの硬さは、炭素原子同士が作る共有結合に由来する。ダイアモンドでは1つの炭素原子が正四面体の中心にあるとすると、最近接の炭素原子はその四面体の頂点上に存在する。頂点上の炭素原子それぞれがsp3混成軌道によって結合しており、幾何的に理想的な角度であるため全く歪みが無い。その結合長は1.54Åである。この結晶構造を持つダイアモンドを立方晶ダイヤとよぶ。一方で、炭素の同素体であるグラファイト(石墨)は、層状の六方晶構造で、層内の炭素同士の結合はsp2混成軌道を形成している。この層内では共有結合を有し結合力は比較的強いが、層間はファンデルワールス結合であるため弱い。六方晶の構造を持つダイヤ(ロンズデーライト)も存在するが、不安定で地球上には隕石痕など非常に限られた場所でしかみつかっておらず、0.1 mmを超える大きさの単結晶は存在しない。純粋なものはダイアモンドよりも硬いことが予想されるが、その性質はまだ分かっていないことも多い。

劈開性
ダイアモンドには一定の面に沿って割れやすい性質(劈開性)がある(4方向に完全)。ダイアモンドは、普通の物質や道具では傷つけられないと思われているが、「結晶方向に対する角度を考慮し、瞬間的に大きな力を加える」、「燃焼などの化学反応を人為的に促進する」などの方法で容易に壊すことができる。また傷があれば、カッターナイフを当てて軽く手で叩くだけで割れてしまう(ダイヤの原石のカットはこの手法で行われる)。

熱伝導
ダイヤモンドは熱伝導性が非常に高い。これは原子の熱振動がフォノンとなって結晶中を伝わりやすいことによる。触ると冷たく感じるのはこのためである。ダイアモンドテスターはこの性質を利用して考案され、ダイアモンドの類似石から識別できる道具だが、合成モアッサナイトだけは識別できない。12Cと13Cではフォノンの振動数が異なり混在はフォノンを散乱させて熱伝導の妨げとなるため、12Cだけで合成された人口ダイアモンドは天然ダイアモンドより熱伝導が高くなる。

CVD人工ダイアモンドの薄板を手で持って氷を切るとすぱすぱと切れる。それほどダイアモンドが熱伝導性に優れるという[12]。

電気伝導 編集
バンドギャップは室温で5.47 eVであり、真性半導体として絶縁体だが、不純物を添加することによる不純物半導体化の試みがなされ、ホウ素添加によりp形、リン添加によりn形が得られている。その物性により、現在よりもはるかに高周波・高出力で動作する半導体素子や、バンドギャップを反映した深紫外線LEDが実現できるのではないかと期待されてきた。現在、自由励起子による波長235 nmの発光がダイアモンドpn接合LEDにより、物質・材料研究機構と産業技術総合研究所から報告されている。バンドギャップの温度依存性については報告があるが、半経験則による計算式で用いられているデバイ温度については、負の値があてがわれたり、式自体を意味のあるデバイ温度を用いるために修正したりして報告されており、未解決になっている。p形半導体ダイアモンドでは、ホウ素添加濃度が1021 cm−3以上で極低温で超伝導となることが報告され、半導体による超伝導現象として現在盛んに研究されている。また、1019 cm−3以上では電気伝導がバンド伝導からホッピング伝導、そして濃度の上昇とともに活性化エネルギーがほとんどない金属的伝導になることが知られている。この不純物濃度と不純物準位との相関についても、不純物バンドやモットの金属・非金属転移と絡めて研究が進んでいる。このような半導体としての基礎的な議論が可能となってきた現在のダイアモンドの半導体としての品質はシリコンと互角であると言えるが、制御性は今後の研究開発がさらに必要である。

親油性
ダイアモンドは油になじみやすい性質(親油性)があり、この性質を利用してダイアモンド原石とそうでないものを分ける作業もある。ジュエリーとして身に付けているうちに皮脂などの汚れがつくと、油の膜によって光がダイアモンド内部に入らなくなり輝きが鈍くなる。中性洗剤や洗顔料などで洗うと油が取れて輝きが戻る。逆に水には全くなじまず、はじいてしまう。